March 1998

DM74LS161A/DM74LS163A

Synchronous

4-Bit Binary Counters

FAIRCHILD

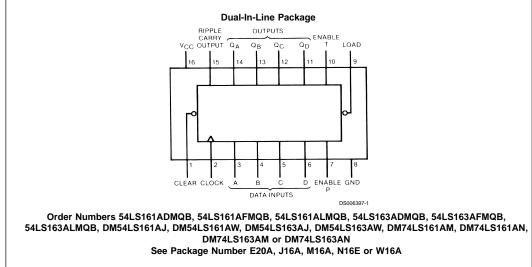
SEMICONDUCTOR IM

DM74LS161A/DM74LS163A Synchronous 4-Bit Binary Counters

General Description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The LS161A and LS163A are 4-bit binary counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buff-ered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable input. The clear function for the LS161A is asynchronous; and a low level at the clear input sets all four of the flip-flop outputs low, regardless of the levels of clock, load, or enable inputs. The clear function for the LS163A is synchronous; and a low level at the clear inputs sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily, as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to all low outputs.


The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output.

Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q_A output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs may occur, regardless of the logic level of the clock. These counters feature a fully independent clock circuit. Changes made to control inputs (enable P or T or load) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable set-up and hold times.

Features

- Synchronously programmable
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs
- Typical propagation time, clock to Q output 14 ns
- Typical clock frequency 32 MHz
- Typical power dissipation 93 mW

Connection Diagram

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	

DM54LS and 54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	P	arameter	C	M54LS16	51A	D	M74LS161	Α	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input	Voltage	2			2			V
VIL	Low Level Input \	/oltage			0.7			0.8	V
I _{он}	High Level Outpu	t Current			-0.4			-0.4	mA
I _{OL}	Low Level Output	Current			4			8	mA
f _{CLK}	Clock Frequency	(Note 2)	0		25	0		25	MHz
	Clock Frequency	(Note 3)	0		20	0		20	MHz
tw	Pulse Width	Clock	20	6		20	6		ns
	(Note 2)	Clear	20	9		20	9		
	Pulse Width	Clock	25			25			ns
	(Note 3)	Clear	25			25			1
t _{su}	Setup Time	Data	20	8		20	8		
	(Note 2)	Enable P	25	17		25	17		ns
		Load	25	15		25	15		
	Setup Time	Data	20			20			
	(Note 3)	Enable P	30			30			ns
		Load	30			30			
t _H	Hold Time	Data	0	-3		0	-3		ns
	(Note 2)	Others	0	-3		0	-3		
	Hold Time	Data	5			5			ns
	(Note 3)	Others	5			5]
t _{REL}	Clear Release Tir	me (Note 2)	20			20			ns
	Clear Release Tir	me (Note 3)	25			25			ns
T _A	Free Air Operatin	g Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5.5V.

Note 3: C_L = 50 pF, R_L = 2 kΩ, T_A = 25 $^\circ C$ and V_{CC} = 5.5V.

'LS161 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
					(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
VoL	Low Level Output	V_{CC} = Min, I_{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	

Symbol	Parameter	Cond	itions	Min	Typ (Note 4)	Max	Units
I _I	Input Current @ Max	V _{CC} = Max	Enable T			0.2	
	Input Voltage	V ₁ = 7V	Clock			0.2	mA
			Load			0.2	1
			Others			0.1	1
Iн	High Level Input	V _{CC} = Max	Enable T			40	
	Current	V _I = 2.7V	Clock			40	μA
			Load			40	1
			Others			20	1
IL	Low Level Input	V _{CC} = Max	Enable T			-0.8	
	Current	$V_{I} = 0.4V$	Clock			-0.8	mA
			Load			-0.8	1
			Others			-0.4	1
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 5)	DM74	-20		-100	
ссн	Supply Current with	V _{CC} = Max			18	31	mA
	Outputs High	(Note 6)					1
CCL	Supply Current with	V _{CC} = Max			19	32	mA
	Outputs Low	(Note 7)					1

Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: I_{CCH} is measured with the load high, then again with the load low, with all other inputs high and all outputs open.

Note 7: I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

'LS161 Switching Characteristics at V_{CC} = 5V and T_A = 25'C

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	С _L = 15 рF		C _L =	50 pF	Units
			Min	Max	Min	Max	1
f _{MAX}	Maximum Clock Frequency		25		20		MHz
t _{PLH}	Propagation Delay Time	Clock to		25		30	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Clock to		30		38	ns
	High to Low Level Output	Ripple Carry					
t _{PLH}	Propagation Delay Time	Clock to Any Q		22		27	ns
	Low to High Level Output	(Load High)					
t _{PHL}	Propagation Delay Time	Clock to Any Q		27		38	ns
	High to Low Level Output	(Load High)					
t _{PLH}	Propagation Delay Time	Clock to Any Q		24		30	ns
	Low to High Level Output	(Load Low)					
t _{PHL}	Propagation Delay Time	Clock to Any Q		27		38	ns
	High to Low Level Output	(Load Low)					
t _{PLH}	Propagation Delay Time	Enable T to		14		27	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Enable T to		15		27	ns
	High to Low Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Clear to		28		45	ns
	High to Low Level Output	Any Q					

Symbol	P	Parameter		DM54LS163A			M74LS163	BA	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input	Voltage	2			2			V
VIL	Low Level Input \	/oltage			0.7			0.8	V
I _{он}	High Level Outpu	t Current			-0.4			-0.4	mA
I _{OL}	Low Level Output	Current			4			8	mA
f _{CLK}	Clock Frequency	(Note 8)	0		25	0		25	MHz
	Clock Frequency	(Note 9)	0		20	0		20	MHz
t _{vv}	Pulse Width	Clock	20	6		20	6		ns
	(Note 8)	Clear	20	9		20	9		1
	Pulse Width	Clock	25			25			ns
	(Note 9)	Clear	25			25]
t _{su}	Setup Time	Data	20	8		20	8		
	(Note 8)	Enable P	25	17		25	17		ns
		Load	25	15		25	15]
	Setup Time	Data	20			20			
	(Note 9)	Enable P	30			30			ns
		Load	30			30			1
t _H	Hold Time	Data	0	-3		0	-3		ns
	(Note 8)	Others	0	-3		0	-3		1
	Hold Time	Data	5			5			ns
	(Note 9)	Others	5			5]
REL	Clear Release Tir	me (Note 8)	20			20			ns
	Clear Release Tir	me (Note 9)	25			25			ns
T _A	Free Air Operatin	g Temperature	-55		125	0		70	°C

Note 8: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V. Note 9: C_L = 50 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

'LS163 Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

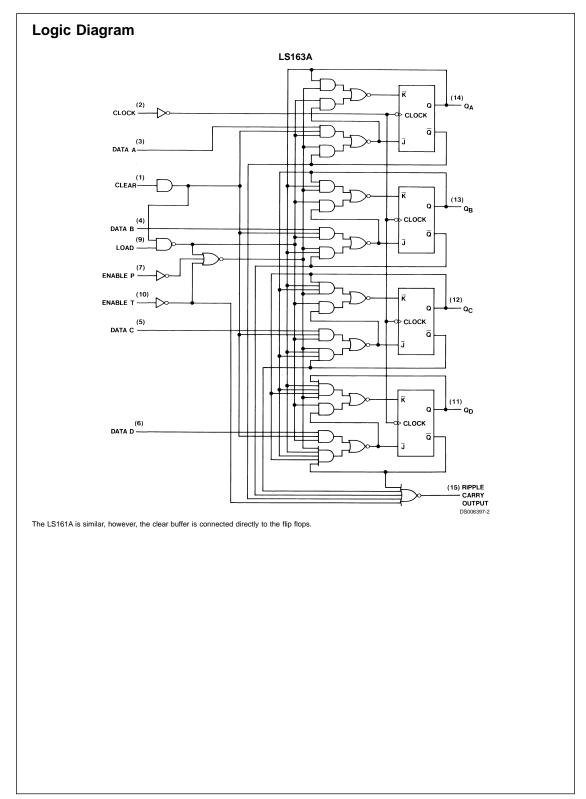
Symbol	Parameter	Condition	Conditions		Typ (Note 10)	Max	Units
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA				-1.5	V
V _{он}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		1
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	l v
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	1
l _i	Input Current @ Max	V _{CC} = Max	Enable T			0.2	
	Input Voltage	$V_1 = 7V$	Clock, Clear			0.2	mA
			Load			0.2	1
			Others			0.1	1
I _{IH}	High Level Input	V _{CC} = Max	Enable T			40	
	Current	V ₁ = 2.7V	Load			40	μΑ
			Clock, Clear			40	1
			Others			20	1

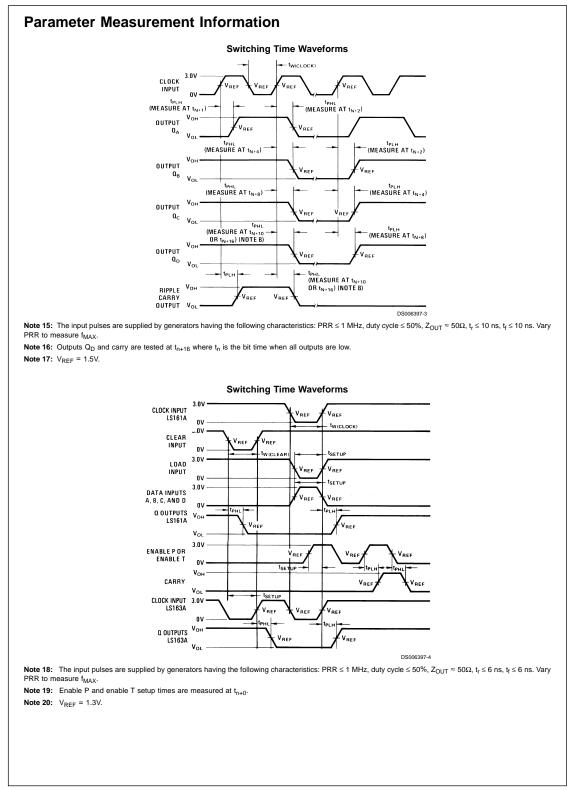
'LS163 Elect	rical Charac	teristics (Continued)
--------------	--------------	-----------------------

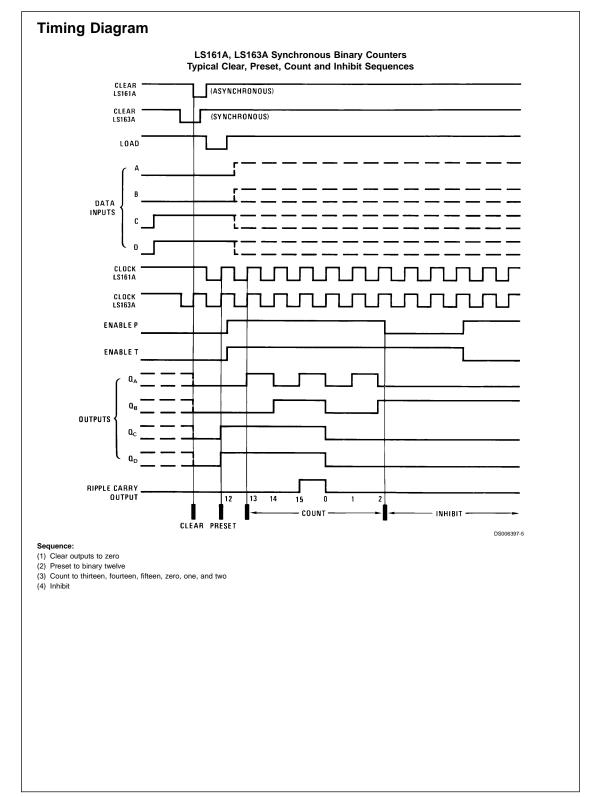
Symbol	Parameter	Co	nditions	Min	Typ	Max	Units
IIL	Low Level Input	V _{CC} = Max	Enable T		(Note 10)	-0.8	
-1L	Current	$V_1 = 0.4V$	Clock, Clear			-0.8	mA
			Load			-0.8	
			Others			-0.4	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 11)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max	ł		18	31	mA
	Outputs High	(Note 12)					
I _{CCL}	Supply Current with	V _{CC} = Max			18	32	mA
	Outputs Low	(Note 13)					

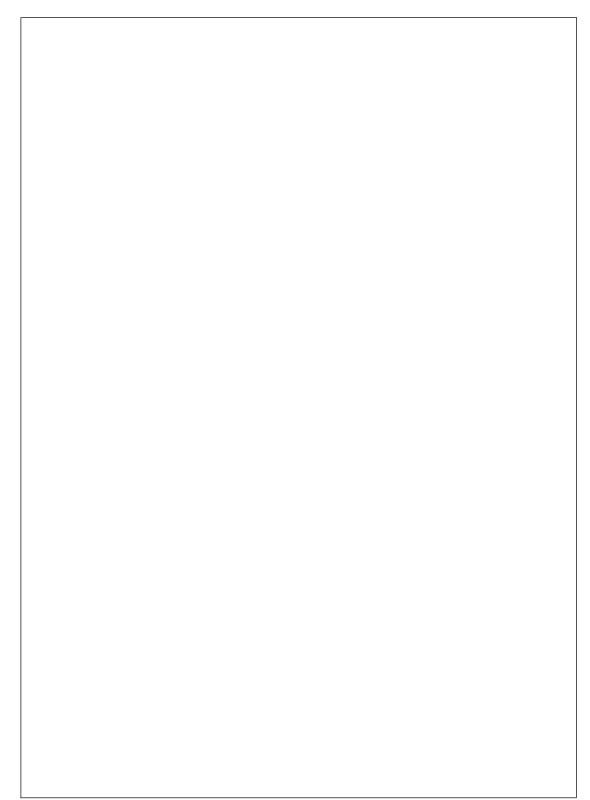
Note 10: All typicals are at V_{CC} = 5V, T_A = 25°C.

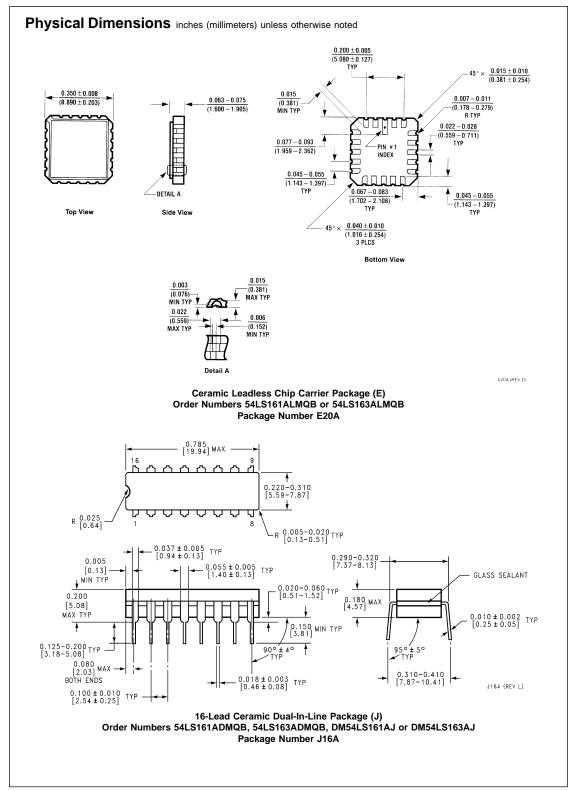
Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.

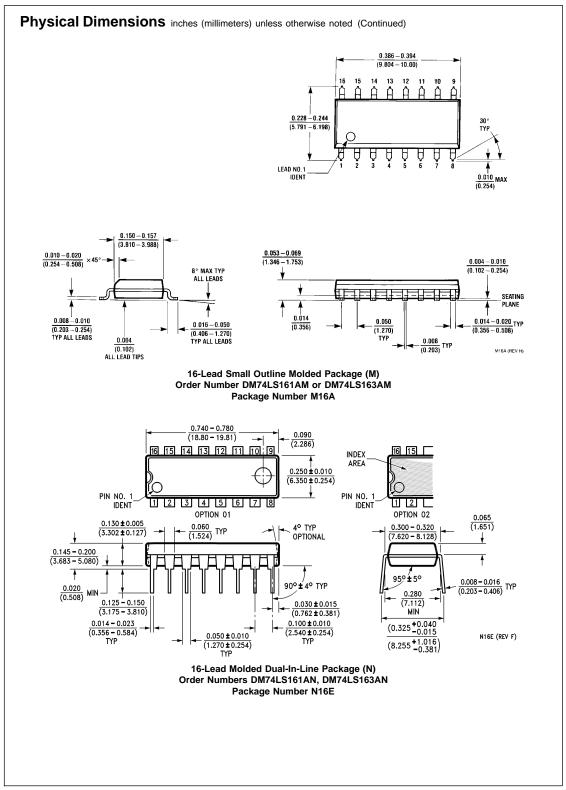

Note 12: I_{CCH} is measured with the load high, then again with the load low, with all other inputs high and all outputs open.

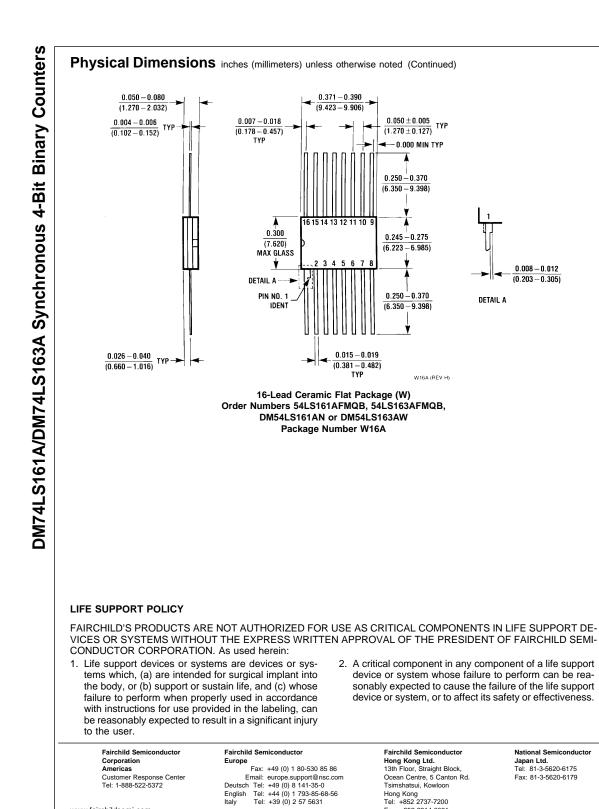

Note 13: I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.


'LS163 Switching Characteristics at V_{CC} = 5V and T_A = 25°C


		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	1
f _{MAX}	Maximum Clock Frequency		25		20		MHz
t _{PLH}	Propagation Delay Time	Clock to		25		30	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Clock to		30		38	ns
	High to Low Level Output	Ripple Carry					
t _{PLH}	Propagation Delay Time	Clock to Any Q		22		27	ns
	Low to High Level Output	(Load High)					
t _{PHL}	Propagation Delay Time	Clock to Any Q		27		38	ns
	High to Low Level Output	(Load High)					
t _{PLH}	Propagation Delay Time	Clock to Any Q		24		30	ns
	Low to High Level Output	(Load Low)					
t _{PHL}	Propagation Delay Time	Clock to Any Q		27		38	ns
	High to Low Level Output	(Load Low)					
t _{PLH}	Propagation Delay Time	Enable T to		14		27	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Enable T to		15		27	ns
	High to Low Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Clear to Any Q		28		45	ns
	High to Low Level Output	(Note 14)					


Note 14: The propagation delay clear to output is measured from the clock input transition.





National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

0.008-0.012 (0.203 - 0.305)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

Fax: +852 2314-0061